GLASROC SHEATHING 5/8" GYPSUM BOARD

CERTAINTEED GYPSUM SEATTLE, WA

The CertainTeed GlasRoc Advantage:

- Non-combustible
- Consistently high quality
- Uniformly flat, attractive appearance, no shadows
- Increased durability
- No wavy edges, warps, bows or deformities
- Uniform high strength cores eliminate crumbling and cracking
- Edge tapers consistent to form perfect joints •
- Excellent thermal barrier and sound attenuation qualities

Architects, contractors and manufacturers continue to look for ways to reduce our industry's impacts on the environment while meeting customer demand for products that deliver beauty, comfort and performance. CertainTeed Gypsum, the leader in innovative drywall and performance wallboards, has the products to make you property healthier, quieter and more comfortable.

CertainTeed Gypsum operates its manufacturing facilities with a responsible and environmentally conscious ethic that includes reclamation, preservation of natural resources, recycling and waste management. CertainTeed, and Saint-Gobain, are committed to providing sustainable building products and to limiting our impacts on the environment while doing so. (See our CSR at https://www.saint-

gobain.com/en/commitments/saintgobains-csr-commitments.)

For more information visit: www.CertainTeed.com

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930:2017

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. <u>Exclusions</u>: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace

tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. <u>Accuracy of Results</u>: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. <u>Comparability</u>: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment				
DECLARATION HOLDER	CertainTeed Gypsum, Inc. • 20 Moores Road • Malvern, PA 19355 • USA				
DECLARATION NUMBER	4789532059.140.1				
DECLARED PRODUCT	GlasRoc Sheathing 5/8" Gypsum Bo	pard – Seattle, WA			
REFERENCE PCR	NSF International PCR for Gypsum	Panel Products v.1e October 2019			
REFERENCE PCR STANDARD	□ EN 15804 (2012) □ ISO 21930 (2007) ⊠ ISO 21930 (2017)				
DATE OF ISSUE	January 1, 2021				
PERIOD OF VALIDITY	5 Years				
CONTENTS OF THE DECLARATION The PCR review was conducte	Product definition and information at Information about basic material and Description of the product's manufac Indication of product processing Information about the in-use condition Life cycle assessment results Testing results and verifications ed by:	I the material's origin cture			
This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories □ INTERNAL ⊠ EXTERNAL		Grant R. Martin Grant R. Martin, UL Environment			
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:		Thomas Gloria, Ph.D., Industrial Ecology Consultants			

This EPD conforms with ISO 21930:2017

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Product Documentation

Product Description

CertaintTeed GlasRoc Sheathing Gypsum Board is an exterior gypsum board consisting of paperless glass mat facers incorporated with a water resistant gypsum core. GlasRoc Sheathing's engineered glass mat facers provide a superior water and UV resistant surface for long term protection to weather exposure. CertainTeed GlasRoc Sheathing features long-term protection to weather exposure, mold resistance, and excellent fire resistance properties. GlasRoc Sheathing meets or exceeds all physical property requirements, offering strength with enough flexibility to bend to curved surfaces.

The CertainTeed GlasRoc Sheathing Advantage:

- Non-combustible
- Consistently high quality
- Uniformly flat, attractive appearance, no shadows
- Increased durability
- No wavy edges, warps, bows or deformities
- Uniform high strength cores eliminate crumbling and cracking
- Edge tapers consistent to form perfect joints
- Excellent thermal barrier and sound attenuation qualities

Application

GlasRoc Sheathing panels are approved substrates by the major EIFS manufacturers, one-coat and conventional stucco systems, traditional cladding systems, exterior ceilings, soffit systems and exterior curved applications.

GlasRoc Sheathing is not a structural product and therefore is not a replacement for plywood or structurally engineered sheathing where required for shear wall designs. Do not use GlasRoc Sheathing as a base for nailing or mechanical fastening.

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Technical Data

Technical Data GlasRoc Sheathing 5/8"					
Thickness	5/8" (15.9mm)				
Width	4' (1220 mm)				
Length	8' (2440)				
Weight	2.57 lbs/ft ² (12.5 kg/m ²)				
UNSPSC Code	301615				
CSI Code	092900				
Flame Spread Rating (ASTM E84, CAN/ULC-S102)	0				
Smoke Developed Rating (ASTM E84, CAN/ULC- S102)	0				
Combustibility (ASTM E136, CAN/ULC-S114)	Non-combustible				
Applicable Stan	dards and References				
ASTM C1177 and C1396	Standard Specification for Gypsum Board: Type X				
	Standard				
CAN/CSA-A82.27	Gypsum Board				
ASTM E2178, CAN/ULC-S741	Air Barrier Materials				
ASTM E2357, CAN/ULC-S742	Air Barrier Assemblies				
ASTM C840	Standard Specification for Application and Finishing of				
	Gypsum Board				
CAN/CSA-A82.31	Gypsum Board Application				
ASTM C1280	Gypsum Sheathing and Soffits				
Gypsum Association GA-216	Application and Finishing of Gypsum Panel Products				
Gypsum Association GA-214	Quick Reference Guide Levels of Finish				
ICC International Building Code (IBC)					
ICC International Residential Code (IRC)					
National Building Code of Canada (NBCC)					

Table 1: Technical Data and Applicable Standards for CertainTeed GlasRoc Sheathing 5/8" Gypsum Board

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Description of Organization

This EPD is specific to the GlasRoc Sheathing Gypsum Board manufactured at the CertainTeed Gypsum facility in Seattle, WA.

 CertainTeed Gypsum 5931 East Marginal Way South Seattle, WA 98134

The Seattle, WA manufacturing facility operates integrated Environmental, Health, and Safety Management Systems that align with the ISO 14001 and ISO 45001 standards.

Flow Diagram

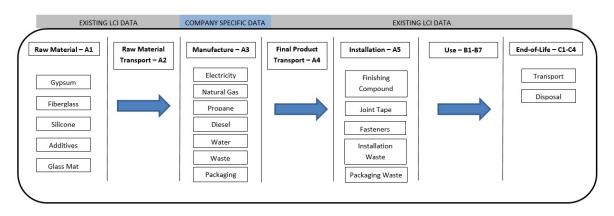


Figure 1: Life Cycle Boundary Flow Diagram

Material Content

Component	GlasRoc Sheathing 5/8"
Internally recycled Gypsum	8.04%
Natural Gypsum	86.01%
Fiberglass	0.27%
Silicone	0.31%
Additives	0.16%
Paper facings	5.22%
Total kg/FU:	1165

Table 2: Material Content for CertainTeed GlasRoc Sheathing 5/8" Gypsum Board (Seattle, WA)

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Methodological Framework

Functional Unit

Functional Unit = 92.9 m ² (1000 ft ²)				
Product Mass (kg/FU) Thickness (cm)				
Glasroc Sheathing Gypsum Board 1165 1.5875 cm (5/8")				
Table 3: Functional Unit				

Reference Service Life

The Reference Service Life used in the study is 75 years, as specified in the PCR.

System Boundary

The life cycle analysis performed for this EPD is classified as a "cradle-to-grave" study. The system boundary includes raw material supply, manufacture, and transport; the GlasRoc Sheathing Gypsum Board manufacture in Seattle, WA and packaging; product transportation to building site; installation; use phase, and product end-of-life.

	Description of the System Boundary (X=included in LCA: MND=module not declared)															
															Benefits &	
			- ·													Loads
			Constr													Beyond
_			Proc									_				System
Proc	duct St	age	Sta	ige				Use Sta	ge			E	nd of L	ife Stage	9	Boundaries
Raw Material Supply	Transport	Manufacturing	Transport from the gate to the site	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-construction demolition	Transport	Waste Processing	Disposal	Reuse-Recover- Recycling Potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	MND

Table 4: System Boundary

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Allocation

There are several facilities in the United States and Canada that produce gypsum board product lines for CertainTeed. Each of the facilities produces multiple types of gypsum board. Allocation within each facility was conducted based on the machine hour run time production data provided by the facilities and the central CertainTeed Gypsum product team. This EPD is specific to the GlasRoc Sheathing Gypsum Board produced at the Seattle, WA facility.

Cut-Off Criteria

The cut-off criteria established for the study include materials, energy, and emissions data. For the purposes of this study, the crtieria are as follows:

- Mass Chemicals with a combined weight less than 1% of the mass of the modeled product may be excluded, providing its environmental relevance is not a concern.
- Hazardous substances as defined by the U.S. Resource Conservation and Recovery Act (RCRA), will be included if representing more than 0.1% of the product composition.
- Human activity factors were not included in the scope of this study.
- Capital equipment factors were not includd in the scope of this study.

Data Sources

GaBi version 9.2 software system was used for modeling the life cycle of the CertainTeed GlasRoc Sheathing Gypsum Board products. Each background dataset was taken from the GaBi Thinkstep US Ecoinvent, USLCI databases, and Ecoinvent v3.

Data Quality

Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty. The data sources used are complete and representative of North America and Europe (depending on the material source) in terms of the geographic and technological coverage and are less than 10 years old. Any deviations from these initial data quality requirements for secondary data are documented in the report. Overall, the primary data from the manufacturing location is of very high quality, being directly tracked and measured by facility personel. Secondary data sets are of fair-to-good quality.

Period Under Review

Data for this LCA was collected for the 2019 calendar year.

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Estimates and Assumptions

Estimates and assumptions are required in life cycle analysis to constrain the project boundary or model when little or not data is available. In this study of CertainTeed GlasRoc Sheathing Gypsum Board, any estimates or assumptions made are appropriately documented in the background report.

Comparability

Comparison of the environmental performance of building and construction products using EPD information shall be based on the product's use and impacts at the building level. In general, EPDs may not be used for comparability purposes when not considered in a building context. As noted in the PCR, only EPDs generated from cradle-to-grave life cycle results and based on the same function, RSL, quantified by the same functional unit, and meeting all the conditions for comparability listed in ISO 14025:2006 and ISO 21930:2017 can be used to compare between products.

Technical Information and Scenarios

Manufacturing (A3)

The process begins with internally recycled gypsum material added to the natural gypsum raw material. Water is then added to produce a stucco slurry. Additional additives are mixed with the slurry as indicated by the specific product recipe. Large rolls of the facing and backing glass mat are loaded onto spools that feed the manufacturing line. The backing glass mat is fed through first, the slurry is applied to the backing glass mat, and then the facing glass mat is fed through the line and applied on top of the slurry. The wet board is fed through rollers to ensure proper thickness and allow the material set. The boards are then cut to length and aligned for processing through the ovens for the remainder of the drying process. After drying in the ovens, the boards are stacked by two, with end tape applied for shipping.

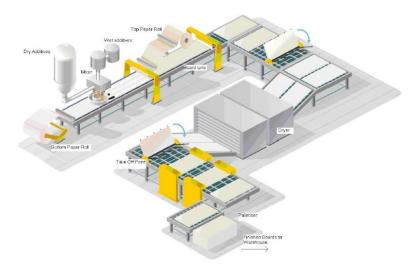


Figure 2: Gypsum Board Manufacturing Diagram

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Packaging (A3)

Packaging of the final product after production is included in the life cycle assessment. Packaging material includes the end tape applied at the end of the manufacturing process, as well as spacers used to stack the boards at varying heights for easier loading and unloading. The spacers used in the packaging are made at the manufacturing facility using rejected boards from the manufacturing process.

Transportation (A4)

Final products are transported via truck throughout North America. Distances and modes of transport for final product transportation are specified in the PCR.

Information	Unit	Value	
Type of transport	Product shipping to distribution center		
Type of vehicle	Commerc	ial tractor-trailer truck	
Distance	km	448	
Fuel type	Diesel		
Amount of fuel	liters	1792 (4 L/km)	
Information	Unit	Value	
Type of transport	Product shipping to distribution center		
Type of vehicle	Rail		
Distance	km 208		
Fuel type	Diesel		
Amount of fuel	liters	1830.4 (8.8 L/km)	
Information	Unit	Value	
Type of transport	Product s	hipping to construction site	
Type of vehicle	Single unit truck		
Distance	km 40		
Fuel type	Diesel		
Amount of fuel	liters 160 (4 L/km)		

Table 5: Final Product Transportation (A4)

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Installation (A5)

The Gypsum Panel PCR specifies the default on-site installation waste scenario is 10% of the installed surface area. The PCR also specifies ancillary materials required for installation of gypsum panels as joint compound, joint tape, and fasteners. This study used the installation calculator located on the CertainTeed Gypsum website to calculate the amount of ancillary materials required for installation. In addition, disposal of the packaging material is included in the installation phase.

Installation (A5)	Unit	GlasRoc Sheathing 5/8"
Product loss	kg	116.5
Ancillary materials	kg	60.573
Joint Compound	kg	56.70
Joint Tape	kg	0.873
Fasteners	kg	3.00
Electricity consumption	kWh	0
Other energy consumption	kWh	0
Water consumption	m ³	0
Direct emissions to ambient air,	kg	0
soil, and water		
Waste materials as output from	kg	116.5
installation process		

Table 6: Installation (A5)

Information	Unit	GlasRoc Sheathing 5/8"		
Mass of packaging waste	kg 1.938			
Type of packaging waste	Non-hazardous co-mingled			
	construction waste to landfill			
Biogenic carbon content of	kg CO ₂ eq	0.021		
packaging (where relevant)				

Table 7: Packaging Waste (A5)

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Use (B1-B7)

Environment

As specified in the PCR, gypsum panel products are assumed to have no material or energy inputs or emissions during the use (B1), maintenance (B2), repair (B3), replacement (B4), or refurbishment (B5) life cycle stages. The PCR also specifies that gypsum panel products are assumed to have no operational energy use (B6) and no operational water use (B7) during the use phase of the life cycle.

Maintenance (B2)	Unit	GlasRoc Sheathing 5/8"
Information on maintenance	-	None required
Maintenance cycle	Number/RSL	0
Water consumption	m ³	0
Ancillary inputs for	kg	0
maintenance		
Other resources	kg	0
Electricity consumption	MJ	0
Other energy carriers	MJ	0
Waste materials resulting from	kg	0
maintenance		

Table 8: Maint	enance (B2)
----------------	-------------

Repair (B3)	Unit	GlasRoc Sheathing 5/8"
Information on repair process	-	None required
Repair cycle	Number/RSL	0
Water consumption	m ³	0
Ancillary inputs for repair	kg	0
Other resources	kg	0
Electricity consumption	MJ	0
Other energy carriers	MJ	0
Waste materials resulting from	kg	0
repair		

Table 9: Repair (B3)

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Replacement (B4)	Unit	GlasRoc Sheathing 5/8"
Information on replacement	-	None required
process		
Replacement cycle	Number/RSL	0
Material inputs for	kg	0
replacement		
Electricity consumption	MJ	0
Waste materials resulting from	kg	0
replacement		

Table 10: Replacement (B4)

Refurbishment (B5)	Unit	GlasRoc Sheathing 5/8"
Information on refurbishment	-	None required
process		
Refurbishment cycle	Number/RSL	0
Material inputs for	kg	0
refurbishment		
Electricity consumption	MJ	0
Waste materials resulting from	kg	0
refurbishment		

Table 11: Refurbishment (B5)

Operational Energy Use (B6)	Unit	GlasRoc Sheathing 5/8"
Electricity consumption	MJ	0
Operational Water Use (B7)	Unit	GlasRoc Sheathing 5/8"
Water consumption	m ³	0

Table 12: Operational Energy and Water Use (B6-B7)

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

End of Life (C1-C4)

The PCR supports the scenario for industry practices that all gypsum panel products shall be disposed in an appropriate construction and demolition landfill at the end of life. At this time, there are no known scenarios for the deconstruction of gypsum boards from the building at the end of life, although the PCR requires inclusion of the energy required for deconstruction and dust released in the air. The deconstruction module (C1) for this study is assumed to use 0.05 MJ of energy in order to be consistent with previous CertainTeed Gypsum Board studies. At this time, there is no known method for distinguishing gypsum board dust from the overall dust generated in the demolition of a building, so the deconstruction module assumed no dust generated. The PCR also specifies the assumption that no gypsum panel waste goes to a waste processing facility prior to disposal in a landfill, so the waste processing module (Module C3) is assumed to be burden free. The product's end-of-life disposition is assumed to be inert in a landfill per the PCR. Disposal in an appropriate construction and demolition landfill or in commercial incineration facilities is permissible and should be done in accordance with local, provincial, and federal regulations.

Parameter		Unit	Value
Assumptions for s	cenario development	-	Disposal inert in landfill
			transported by truck
	End of Life (C1-C4)		GlasRoc Sheathing 5/8"
Deconstruction	Energy use	MJ	0.05
Collection	Collected separately	kg	0.00
Process	Collected with mixed construction	kg	1048.3
11000035	waste		
	Reuse	kg	0.00
	Recycling	kg	0.00
	Landfill	kg	0.00
Recovery	Incineration	kg	0.00
	Incinerations with energy recovery	kg	0.00
	Energy conversion efficiency rate		0.00
Disposal	Product or material for final	kg	1048.3
Disposal	deposition		

Table 13: End-of-Life (C1-C4)

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

LCA Results

TRACI Impact Assessment Indicators (North America)

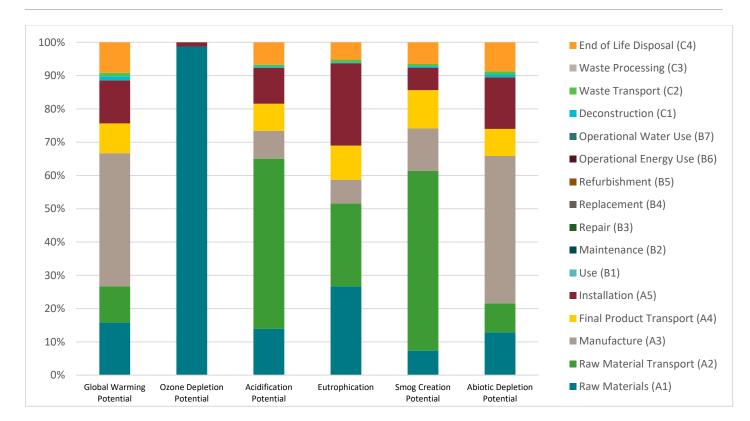

GlasRoc Sheathing Gypsum Board – TRACI Environmental Impacts – Seattle, WA							
GlasRo			rd – TRACI Envi	ronmental Im	pacts – Seattle,	WA	· · · · · · · · · · · · · · · · · · ·
	Global	Global					
	Warming	Warming	_			_	
	Potential,	Potential,	Ozone			Smog	Abiotic
	excl.	incl.	Depletion	Acidification	Eutrophication	Creation	Depletion
	biogenic	biogenic	Potential	Potential	Potential	Potential	Potential (fossil)
	kg CO₂ eq	kg CO₂ eq	kg CFC 11 eq	kg SO₂ eq	kg N eq	kg O₃ eq	MJ
Raw Materials (A1)	7.34E+01	7.32E+01	3.33E-05	4.12E-01	5.78E-02	3.97E+00	1.31E+02
Raw Material Transport (A2)	5.08E+01	5.08E+01	4.83E-15	1.52E+00	5.36E-02	2.91E+01	8.89E+01
Manufacture (A3)	1.86E+02	1.86E+02	5.15E-10	2.48E-01	1.55E-02	6.88E+00	4.52E+02
Total A1-A3:	3.10E+02	3.10E+02	3.33E-05	2.18E+00	1.27E-01	4.00E+01	6.72E+02
Final Product Transport (A4)	4.15E+01	4.16E+01	5.63E-15	2.41E-01	2.22E-02	6.22E+00	8.30E+01
Installation (A5)	6.02E+01	2.22E+01	4.26E-07	3.19E-01	5.35E-02	3.65E+00	1.58E+02
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Deconstruction (C1)	5.73E+00	5.73E+00	5.04E-16	1.27E-02	5.40E-04	2.49E-01	8.31E+00
Waste Transport (C2)	4.72E+00	4.82E+00	6.59E-16	1.54E-02	1.79E-03	3.47E-01	9.71E+00
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of Life Disposal (C4)	4.26E+01	4.30E+01	1.47E-13	1.99E-01	1.12E-02	3.51E+00	8.90E+01
Total Cradle-to-Grave:	4.65E+02	4.27E+02	3.37E-05	2.96E+00	2.16E-01	5.40E+01	1.02E+03

Table 14: Cradle-to-Grave TRACI Environmental Impacts

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Figure 3: Cradle-to-Grave TRACI Environmental Impacts

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

EN 15804 Impact Assessment Indicators (Europe)

GlasRoc Sheathing Gypsum Board – EN 15804 Environmental Impacts – Seattle, WA						
	GWP (EN),	ODP (EN)	AP (EN)	EP (EN)	POCP (EN)	ADPF (EN)
	TOTAL (incl.					
	biogenic)					
	kg CO₂ eq	kg R 11 eq	kg SO₂ eq	kg phosphate eq	kg ethane eq	MJ
Raw Materials (A1)	7.32E+01	3.31E-05	4.17E-01	4.57E-02	2.79E-02	6.95E+02
Raw Material Transport (A2)	5.08E+01	4.83E-15	1.42E+00	1.54E-01	7.02E-02	5.99E+02
Manufacture (A3)	1.86E+02	5.14E-10	1.97E-01	3.76E-02	2.42E-02	9.16E+02
Total A1-A3:	3.10E+02	3.31E-05	2.03E+00	2.37E-01	1.22E-01	2.21E+03
Final Product Transport (A4)	4.16E+01	5.63E-15	1.76E-01	4.65E-02	-4.54E-02	5.63E+02
Installation (A5)	2.22E+01	3.66E-07	3.22E-01	4.20E-02	1.99E-02	9.93E+02
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Deconstruction (C1)	5.73E+00	5.04E-16	1.18E-02	1.34E-03	1.01E-03	5.61E+01
Waste Transport (C2)	4.82E+00	6.59E-16	1.14E-02	3.06E-03	-3.89E-03	6.59E+01
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of Life Disposal (C4)	4.30E+01	1.47E-13	1.82E-01	2.27E-02	1.60E-03	5.34E+02
Total Cradle-to-Grave:	4.27E+02	3.34E-05	2.73E+00	3.53E-01	9.55E-02	4.42E+03

Table 15: Cradle-to-Grave EN 15804 Environmental Impacts

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

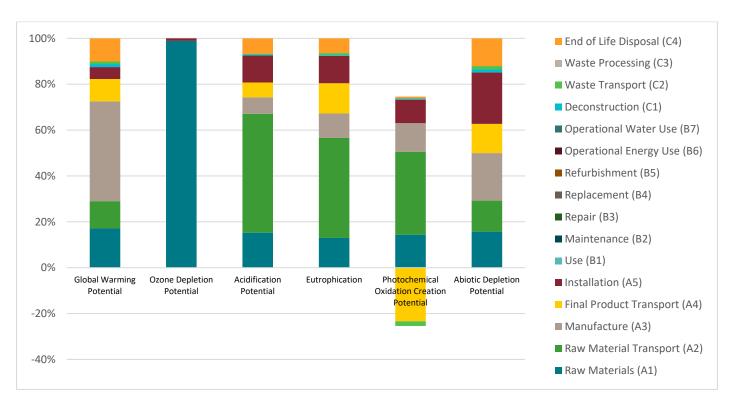


Figure 4: Cradle-to-Grave EN 15804 Environmental Impacts

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Use of Primary Resources

Use of Primary Resources							
			NRPR _E : Non- NR				
	RPR_E: <i>Renewable</i>	RPR _M : <i>Renewable</i>	renewable primary	renewable primary			
	primary energy	primary resources	resources used as	resources with			
	used as energy	with energy content	an energy carrier	energy content			
	carrier (fuel)	used as material	(fuel)	used as material			
	MJ	MJ	MJ	MJ			
Raw Materials (A1)	1.04E+02	3.72E-02	1.24E+03	3.61E-02			
Raw Material Transport (A2)	5.39E+00	-8.93E-09	6.67E+02	2.33E-03			
Manufacture (A3)	1.35E+02	-1.52E-07	3.16E+03	6.11E-03			
Total A1-A3:	2.44E+02	3.72E-02	5.06E+03	4.45E-02			
Final Product Transport (A4)	2.63E+01	-4.86E-08	6.24E+02	2.05E-02			
Installation (A5)	9.46E+01	2.21E+02	1.29E+03	7.79E-02			
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Deconstruction (C1)	3.07E-01	-1.15E-09	6.24E+01	4.21E-05			
Waste Transport (C2)	3.08E+00	-5.69E-09	7.30E+01	2.40E-03			
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of Life Disposal (C4)	5.68E+01	-3.37E-08	7.02E+02	1.67E-02			
Total Cradle-to-Grave:	4.25E+02	2.21E+02	7.81E+03	1.62E-01			

Table 16: Use of Primary Resources

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Use of Secondary Resources

Use of Secondary Resources								
			NRSF: Non-		FW: Use of net			
	SM: Secondary	RSF: Renewable	renewable	RE: Recovered	fresh water			
	materials	secondary fuels	secondary fuels	energy	resources			
	kg	MJ	MJ	MJ	m ³			
Raw Materials (A1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.05E+00			
Raw Material Transport (A2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.00E-02			
Manufacture (A3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.18E+00			
Total A1-A3:	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.25E+00			
Final Product Transport (A4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.17E-01			
Installation (A5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.68E+00			
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Deconstruction (C1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.88E-04			
Waste Transport (C2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.37E-02			
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of Life Disposal (C4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.96E-02			
Total Cradle-to-Grave:	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.17E+00			

Table 17: Use of Secondary Resources

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Renewable and Non-Renewable Energy by Source

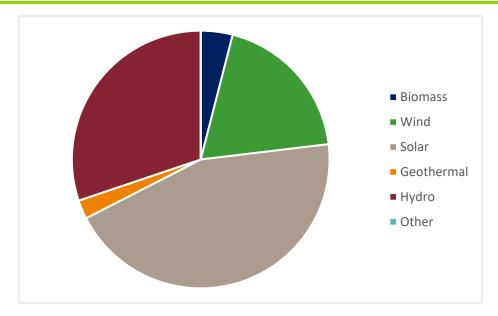


Figure 5: Renewable Energy by Source

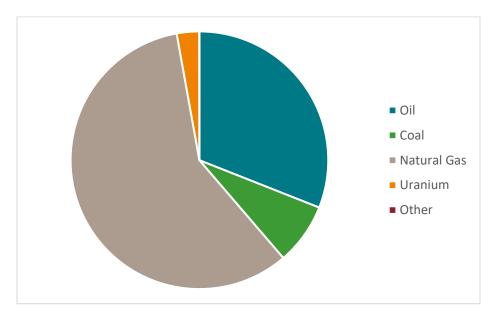


Figure 6: Non-Renewable Energy by Source

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Waste Flows

Wasta Flows						
	\ 	Naste Flows	L			
			High level	Intermediate and low		
	Hazardous		radioactive waste,	level radioactive waste,		
	waste	Non-hazardous	conditioned, to	conditioned, to final		
	disposed	waste disposed	final repository	repository		
	kg	kg	kg	kg		
Raw Materials (A1)	1.14E-02	5.41E+00	4.99E-05	1.25E-03		
Raw Material Transport (A2)	1.22E-06	2.31E-02	1.59E-06	4.34E-05		
Manufacture (A3)	1.34E-06	5.39E+00	8.98E-06	2.44E-04		
Total A1-A3:	1.14E-02	1.08E+01	6.05E-05	1.54E-03		
Final Product Transport (A4)	1.07E-05	4.47E-02	1.70E-06	4.56E-05		
Installation (A5)	1.54E-06	1.20E+02	1.38E-05	3.86E-04		
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Deconstruction (C1)	2.09E-08	1.03E-02	1.49E-07	4.06E-06		
Waste Transport (C2)	1.25E-06	5.23E-03	1.98E-07	5.34E-06		
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
End of Life Disposal (C4)	4.69E-06	1.05E+03	6.93E-06	1.82E-04		
Total Cradle-to-Grave:	1.15E-02	1.18E+03	8.33E-05	2.16E-03		

Table 18: Waste Flows

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

Output Material Flows

Output Material Flows						
	Components for reuse	Materials for recycling	Materials for energy recovery	Recovered energy exported		
	kg	kg	kg	kg		
Raw Materials (A1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Raw Material Transport (A2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Manufacture (A3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Total A1-A3:	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Final Product Transport (A4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Installation (A5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Deconstruction (C1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Waste Transport (C2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
End of Life Disposal (C4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Total Cradle-to-Grave:	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

Table 19: Output Material Flows

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

LCA Interpretation

Based on the results from the life cycle assessment model, the life cycle impacts are strongly driven by the manufacture. The impacts of the manufacture are primarily attributed to the natural gas usage needed for the ovens to dry the boards. The natural gas usage in the manufacture accounts for as much as 37% of the cradle-to-grave environmental impact potentials for CertainTeed GlasRoc Sheathing 5/8" Gypsum Boards at the Seattle, WA facility.

The manufacturing of gypsum board (A3) has the highest contribution to Global Warming Potential impacts. The switch from paper facing material to fiberglass mat accounts for the higher raw material impacts for GlasRoc Sheathing versus typical gypsum board. The use of internally recycled gypsum material helps to reduce the overall environmental impact potentials by reducing the amount of external raw materials needed for the process.

Another potentially significant contributor to the overall environmental impact results is seen in the results for the installation of the Gypsum Boards. The installation waste accounts for the majority of the impacts for installation. The PCR requires the use of a 10% installation waste scenario in the absence of actual data. As there is currently no actual installation data available, and because installation techniques may vary widely among installers, CertainTeed has little to no influence on the installation impacts.

Additional Environmental Information

Environment and Health During Manufacture

CertainTeed and Saint-Gobain have well-established Environmental, Health, and Safety (EHS) and product stewardship programs, which help to enforce proper evaluation and monitoring of chemicals and raw materials chosen to manufacture products. These programs ensure that all environmental and OSHA requirements are met or exceeded to ensure the health and safety of all employees and contractors.

The Seattle, WA CertainTeed Gypsum manufacturing facility operates integrated Environmental, Health, and Safety Management Systems that align with the ISO 14001 and ISO 45001 standards.

Further Information

https://www.certainteed.com/drywall/

LCA Development

This EPD and the corresponding LCA were prepared by Saint-Gobain Corporation North America in Malvern, PA.

GlasRoc Sheathing 5/8" Gypsum Board Seattle, WA

According to ISO 14025/44/40 Series and ISO 21930

References

- Product Category Rules for Building-Related Product and Services: Part A Life Cycle Assessment Calculation Rules and Report Requirements, Version 3.2 2018. UL Environment.
- Product Category Rule for Environmental Product Declarations: PCR for Gypsum Panel Products. April 23, 2020. NSF International.
- UL Program Instructions, Versions 2.5 March 2020. UL Environment
- ISO 14040: 2006 Series Environmental Management-Life Cycle Assessment
- EN 15804 Sustainability of construction works Environmental Product Declarations Core rules for the product category of construction products
- ISO 21930:2017 Sustainability in building construction Environmental declaration of building products
- GaBi Ecoinvent Database. <u>www.thinkstep.com</u>
- US LCI Database. <u>www.nrel.gov.lci</u>
- Ecoinvent v3 Database. http://ecoinvent.org/
- Life Cycle Assessment: CertainTeed Gypsum, Gypsum Board EPD Generator LCA Methodology Report. 2020. CertainTeed Saint-Gobain North America EHS&S
- CertainTeed Gypsum Website. https://www.certainteed.com/drywall/

